Det är många som känner sig osäkra på om elbilen verkligen är ett miljövänligt alternativ när du köper en ny bil. Osäkerheten byggs på när det kommer bristfälliga studier som menar att elbilens batteri tar bort hela miljöeffekten, Hur skall du då tänka när du studerar miljöpåverkan från en elbil?
Det kan vara bättre med en gammal fossilbil än en ny elbil
Till att börja med finns det studier som trycker på att det är bättre att använda en gammal bensinbil än att köpa en ny elbil. Självklart är det bra om vi använder det vi redan tillverkat och påverkat miljön med. För att minska avtrycket av tillverkningen är det bra om den rullar många mil. Dock finns det en brytgräns någonstans även där, med tanke på hur dålig verkningsgrad en förbränningsmotor har och hur det fossila bränslet hela tiden påverkar miljön, både vid tillverkningen av bränslet och förbrukningen när bilen körs.
Tänker vi oss att det är en ny bil vi pratar om är läget ett helt annat, och det är då vi kan göra en rimlig jämförelse. Här kan vi med ganska stor säkerhet visa på vilket av alternativen som är bäst för miljön.
Tillverkningen är en del av LCA
När vi gör en komplett livscykelanalys, LCA, har vi flera olika steg att ta hänsyn till. Det är tillverkning av bilen, påverkan när bilen körs och när den skall återvinnas. I flera artiklar som publicerats på nätet haltar jämförelsen mellan elbilen och fossilbilen, vilket gör att den förbättrande miljöeffekten av en elbil näst intill försvinner. Dessa artiklar jämför oftast tillverkningen av elbilen med utsläpp från avgaserna på fossilbilen. Man tar alltså inte hänsyn till utsläppen vid fossilbilens eller dess bränsles tillverkning.
För elbilen är det batteriet, och till viss del elmotorn, som är särskilt miljöbelastande. Det stämmer att miljöbelastningen vid tillverkning varit påtaglig, speciellt påtaglig i den litteraturstudie som svenska IVL gjort och som fått stor uppmärksamhet i media. Det är en litteraturstudie som är en sammanfattning av andra studier som är gjorda precis när elbilen började massproduceras strax före 2010. Sedan dess har processer förbättrats, samtidigt som det blivit mer intressant att massproducera batterier vilket också gynnar miljön.
För att öka batteriets kapacitet och göra de mer hållbara pågår en intensiv utveckling med den kemiska sammansättningen i batteriet, exempelvis vilka material som används. Tillverkarna vill bygga ett lättare batteri, som kan laddas med mer energi i förhållandet till vikten (Wh/kg).
Dessutom tittar man på hur beståndsdelarna på verkar miljön, hur lätt de är att få tag i, hur batterierna kan byggas säkrare och kunna användas längre. Just tillgängligheten påverkar också priset på batteriet i förhållande till energin det kan lagra (kr/Wh).
Det tog ett par år in på 2010-talet innan detta blev intressant, när volymerna för batteri ökat i och med att elbilen blivit allt mer intressant.
Eftersom konsumenten är medveten har det också lett till att biltillverkarna känner ett ansvar för hur de material som används i batteriet bryts.
Från källa till tank (WTT)
Går vi vidare från tillverkningen behöver vi ta hänsyn till hur bränslet tillverkas och hamnar i tanken/batteriet i bilen. Det kallas för Well To Tank, WTT. Den svenska översättningen är från källa till tank.
För fossilbilen handlar det om hur oljan kommer från oljekällan via transporter, raffinaderier vidare till macken och till sist in i tanken på bilen.
För elbilen handlar den om hur den el som bilen laddas med produceras (kolkraft, kärnkraft förnybar energi) och distribueras till batteriet.
Från tank till hjul (TTW)
Bilen går ju inte framåt för att vi har diesel i tanken eller ett laddat batteri. Nästa steg är att få energin att nå hjulen så att bilen kan röra sig framåt. Begreppet här är Tank To Wheel, TTW, eller på svenska tank till hjul.
Här är en väldigt stor skillnad mellan elmotorn och förbränningsmotorn, vilket beror på motorns verkningsgrad. För en förbränningsmotor ligger verkningsgraden på ca 30% och för elmotorn ligger det på 90%. Det är till stor del här vinsten ligger i att köra elbil.
Service och underhåll
Elbilen och fossilbilen skiljer sig också i antalet rörliga delar för motor och transmission, där elmotorn har ca 200 rörliga delar medan förbränningsmotorn och dess stödsystem har över 2000 delar. Många av de rörliga delarna i förbränningsmotorn slits och behöver bytas, och kräver dessutom smörjmedel som motorolja för att kunna fungera.
Däck och andra delar som finns på båda bilarna slits likvärdigt. Däcken slits kanske något mer på en elbil efter som den är lite tyngre än motsvarande fossilbil.
Återvinning av bilen
Nu återstår återvinning av bilen, och den är likvärdig när det gäller chassi och sådana delar. Den skillnad som många vill sätta fokus på är hur batteriet skall återvinnas.
Precis som i diskussionen kring tillverkningen av batteriet så pågår det en intensiv utveckling på området, både med processer och vilka material som används. Kom ihåg att utvecklingen av elbilsbatterier är knappa 10 år, medan fossilbilens utveckling för massmarknaden pågått i 100 år.
En stor skillnad är att när ett elbilsbatteri anses förbrukat (när batteriet når State Of Health, SoH, under 80%) för att användas i elbilen är den inte slut som produkt. I ett cirkulärt tänkande användas en produkt flera gånger innan det anses helt förbrukat, dock används det inte till samma sak. När SoH blir under 80% anses det lagra för lite energi i förhållande till sin vikt, och kan då flyttas till att användas som energilager för elnätet. Exempelvis kan den agera energilager för en solcellsanläggning, där förhållandet vikt/energilagring inte har någon större betydelse. Batteriet kan du under många år framöver använda för att flytta energin från tillfället då solenergin skapas (dagen) till den tidpunkt då den används (kvällen).
Eftersom en bil står parkerad runt 95% av tiden är det något som elbilsbatteriet också skulle användas till. Genom att bilen kopplas till en smart laddare kan man skriva avtal med elbolaget att få använda din bil för att ladda på dagen och sedan köpa en andel el från ditt batteri när de har en effekttopp. Då kan de balansera frekvensen i elnätet blixtsnabbt. Detta är något som börjat användas på en del platser runtom i världen, och det kallas Vehicle To Grid, V2G.
Hur ser det ut om vi jämför elbil med fossilbil?
På universitetet i Bryssel har det gjorts en livscykelanalys på klimatpåverkan för elbilen, beroende på vilken nationell elmix som används. Den jämför en dieselbil som släpper ut 120 gCO2/km med allt från polsk elproduktion, med stor andel kol, till svensk med mycket vattenkraft och kärnkraft.
EU-28 är en sammantagen bild av hur elmixen ser ut i de 28 medlemsländerna i EU.
Där ser vi att de går fler än två elbilar på en fossilbil om vi producerar elen med EU-elmix. Använder vi svensk elproduktion ger det drygt sex elbilar på en fossilbil.
Den gula delen i stapeln för dieselbilen visar förbränningsmotorns dåliga verkningsgrad. Storleken på den bruna stapeln för elbilen beror på hur elen produceras. Den mörkare gröna visar på belastningen vid tillverkningen av batteriet.
Utdrag från föreläsning med Christian där han berättar om diagrammet. Vill du ha en elbilsföreläsning hos dig, kontakta oss.
En studie av Mercedes B-klasse
Det tyska TÜV som gör studier i miljöpåverkan gjorde på uppdrag av Daimler en livscykelanalys av Mercedes B-klass. Den kom fram till samma sak som rapporten från universitet i Bryssel.
Det finns alltså flera av varandra oberoende studier som visar att avtrycket omräknat i koldioxidekvivalenter talar för elbilen, vilket betyder att den som vill göra en insats för miljön och står i begrepp att köpa en ny bil bör välja en elbil.